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Cellular automata (CA) have been used to understand the complexity and dynamics
of cities. The logistic cellular automaton (Logistic-CA) is a popular urban CA model
for simulating urban growth based on logistic regression. However, this model usu-
ally employs a cell-based simulation strategy without considering the spatial evolution
of land-use patches. This drawback largely constrains the Logistic-CA for simulating
realistic urban development. We proposed a Patch-Logistic-CA to deal with this prob-
lem by incorporating a patch-based simulation strategy into the conventional cell-based
Logistic-CA. The Patch-Logistic-CA differentiates new developments into spontaneous
growth and organic growth, and uses a moving-window approach to simulate the evo-
lution of urban patches. The Patch-Logistic-CA is tested through the simulation of
urban growth in Guangzhou, China, during 2005–2012. The cell-based Logistic-CA
was also implemented using the same set of data to make a comparison. The simula-
tion results reflect that the Patch-Logistic-CA has slightly lower cell-level agreement
than the cell-based Logistic-CA. However, visual inspection of the results reveals that
the cell-based Logistic-CA fails to reflect the actual patterns of urban growth, because
this model can only simulate urbanized cells around the edges of initial urban patches.
Actually, the pattern-level similarities of the Patch-Logistic-CA are over 18% higher
than those of the cell-based Logistic-CA. This indicates that the Patch-Logistic-CA has
much better performance of simulating actual development patterns than the cell-based
Logistic-CA. In addition, the Patch-Logistic-CA can correctly simulate the fractal struc-
ture of actual urban development patterns. By varying the control parameters, the
Patch-Logistic-CA can also be used to assist urban planning through the exploration
of different development alternatives.

Keywords: cellular automata; Patch-Logistic-CA; urban simulation

1. Introduction

Cellular automata (CA), which originated from complexity sciences (Wolfram 1984), have
been widely used for simulating urban phenomena. CA are attractive for urban modeling
as they are simple and intrinsically spatial (White and Engelen 1993). Modifications and
spatial constraints were also imposed by many researchers to make CA better for practi-
cal uses (White et al. 1997, Li and Yeh 2000). Various urban CA models were developed
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over the last two decades for the simulation of realistic urban growth (White and Engelen
1997, Clarke and Gaydos 1998, Li and Yeh 2002, Wu 2002, Li and Yeh 2004, White et al.
2012). In these models, urban landscape is represented as raster space, in which a cell is
the basic modeling unit for the simulation of land-use conversion. For a long time, accurate
simulation of land-use conversion at cell level is considered fundamental for CA modeling.
However, as actual land-use systems are full of stochastic processes and path-dependences,
‘demanding that modelers get the locations right may be asking too much’ (Brown et al.
2005). Moreover, models could be overfitting if they produce outcomes in which the loca-
tions of new developments are strictly consistent with the referenced land-use data (Brown
et al. 2005).

From the perspective of investigating urban land-use systems, it is crucial for CA mod-
els to successfully replicate realistic spatial land-use patterns as well as predict the locations
of new developments (Meentemeyer et al. 2013). Measures such as landscape metrics have
been adopted to validate simulation models with respect to aggregate pattern similarity (Sui
and Zeng 2001, Parker and Meretsky 2004, Liu et al. 2010). Some researchers even regard
pattern similarity as the core criterion for calibrating CA models (e.g., Slope, Land use,
Exclusion, Urban extent, Transportation, and Hillshade (SLEUTH)) (Clarke and Gaydos
1998, Silva and Clarke 2002, Dietzel and Clarke 2007). More recently, Li et al (2012) pro-
posed a pattern-calibrated CA based on genetic algorithm to improve the goodness-of-fit
between simulated and observed development patterns. However, most of the existing CA
models, including SLEUTH (Clarke and Gaydos 1998) and the pattern-calibrated CA (Li
et al. 2012), employ a cell-based simulation strategy without considering the spatial evo-
lution of land-use patches (i.e., homogeneous cells that are spatially connected with each
other). In this study, we take the logistic cellular automaton (Logistic-CA) (Wu 2002) as
an example to illustrate the limitations of the cell-based simulation strategy for simulating
actual urban development patterns. As we will demonstrate in Section 4.2, the cell-based
Logistic-CA fails to produce realistic simulations of urban growth even though the model
is well calibrated.

Logistic-CA is one of the popular CA models for simulating urban land-use dynamics
(Fang et al. 2005, Han et al. 2009, Van Dessel et al. 2011, Jokar Arsanjani et al. 2013). The
calibration of Logistic-CA is convenient based on logistic regression. Many improvements
of the Logistic-CA focus on the derivation of more precise parameters through the use of
advanced techniques, such as support vector machine (Yang et al. 2008), kernel-function
(Liu et al. 2008), and genetic algorithm (Li et al. 2008). However, less attention is paid to
the modification of the cell-based simulation strategy in the Logistic-CA. To address this
issue, we proposed a new urban CA model, Patch-Logistic-CA, by incorporating a patch-
based simulation strategy into the conventional Logistic-CA (referred to as cell-based
Logistic-CA below). Recently, Meentemeyer et al (2013) also developed a patch-based
urban CA model using the patch-growing algorithm (PGA). This method can allocate
new developments around a fixed centroid to simulate the growth of urban patches. The
patch-based simulation strategy we used is different from the algorithm proposed by
Meentemeyer et al (2013). In this study, the patch-based simulation strategy differentiates
new developments into spontaneous growth and organic growth, and adopts a moving-
window approach to simulate the evolution of urban patches (see Section 2.2 for more
details).

The proposed Patch-Logistic-CA was tested through the simulation of urban growth in
Guangzhou, China, during 2005–2012. The cell-based Logistic-CA was also implemented
with the same set of data to make a comparison. Additionally, the Patch-Logistic-CA was
used to explore different development alternatives for Guangzhou from 2012 to 2020.
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236 Y. Chen et al.

2. Patch-Logistic-CA

Figure 1 illustrates the flow of urban growth simulation using Patch-Logistic-CA. First,
logistic regression is adopted to determine the weights of the input spatial variables for
the subsequent calculation of development probability. Second, empirical land-use data
are used to identify the actual new development patches and their size distribution. Third,
new developments are iteratively simulated using the patch-based simulation strategy. This
strategy simulates the growth of one new urban patch for each iteration. At the beginning of
an iteration, the size of a new patch is estimated according to the observed size distribution

Spatial variables

Empirical land-use data

Derive the weights of the input spatial
variables using logistic regression

Calculate development probability

Estimate the size of a new patch

Growth type?

Seed-planting
(Spontaneous growth)

Seed-planting
(Organic growth)

Patch growth process

Terminate?

Export simulation

No

Spontaneous Organic

Yes

Derive the distribution of patch sizes

Patch-based simulation

Identify new development patches

2005 2008

Figure 1. The methodology of the Patch-Logistic-CA.
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derived in previous step. This patch is categorized either as spontaneous or organic growth
depending on the comparison between a random pointer and a predefined threshold. Then,
the patch growth is simulated based on a moving-window approach. Finally, the whole
model terminates if the ending condition is satisfied (i.e., the quantity of simulated devel-
opments meets the given areal constraint); otherwise the model continues running. The
following sections provide more detailed procedures.

2.1. Estimating development probability

The calculation of development probability considers three aspects: development potential,
neighborhood development density, and suitability constraint. The development potential
of a cell (i, j) is calculated based on a set of development factors, such as the proximity to
urban centers or road networks. The development potential pg,ij of cellij is formulated in a
logistic form as follows:

pg,ij = exp(z)

1 + exp(z)
= 1

1 + exp(−z)
(1)

where z is the combination score of development factors of cellij:

z = b0 +
∑

k

bkxk (2)

where xk is the development factors of cellij; b0 is the intercept, and bk are the weights of
the development factors, which can be derived through logistic regression (Wu 2002, Li
et al. 2008).

The development potential pg,ij only addresses the influences of static physical factors.
Actual urban developments are also subject to the effects of dynamic factors. These effects
are represented by the neighborhood development density:

�t
ij =

∑
n2

con(sij = developed)

n2 − 1
(3)

where �t
ij is the development density within an n × n Moore neighborhood of cellij at time

t; con() is a conditional function that returns 1 if the state of a cell within the neighborhood
is developed.

Additionally, constraints are also included to represent the suitability for development.
For instance, if a cell belongs to water, mountains or other types of restricted areas, then
the suitability of this cell should be 0, which means that this cell will not be considered
for development. Overall, the development probability of cellij at time t is calculated as
follows:

pt
c,ij = pg,ij�

t
ijcon(sij = suitable) (4)

where con() is a conditional function that returns 1 if cellij is suitable for development.
As proposed by Wu (2002), a nonlinear transformation should be applied to pt

c,ij in order
to promote the development probability in those cells with higher development potential:
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238 Y. Chen et al.

pt
t,ij = pt

c,ij exp[−δ(1 − pt
c,ij/pt

c,max)] (5)

where pt
c,max is the maximum value of pt

c,ij at time t; and δ is called the dispersion
parameter, ranging from 1 to 10.

Then, pt
t,ij is scaled into [0, 1] through the following equation:

pt
s,ij = pt

t,ij

/∑
pt,i ′j ′ (6)

where pt
s,ij is the development probability for simulating urban growth.

2.2. Simulation of patch growth using a moving-window approach

The size (the number of cells) of a new patch should be estimated before the simula-
tion of its growth. A previous empirical study in the Pearl River Delta, which consists
of Guangzhou and several other cities, reveals that the size distribution of urban patches
in Guangzhou follows the power law (Fragkias and Seto 2009). Thus, we used a power
function to estimate the size of a new patch

Ai = a0(rarea)a1 (7)

where Ai is the size of patch i; a0 and a1 are the parameters that can be determined
according to the actual size distribution of new development patches. The meaning of the
exponent a1 is similar to that in the study by Fragkias and Seto (2009). Higher absolute val-
ues of a1 represent a more uneven size distribution, while lower absolute values represent
a more even size distribution (the value of zero suggests that all patches have equal size).
The parameter rarea is a random value within (0, 1]. It represents the selection probability
of a specific patch size from the actual size distribution.

After the patch size is estimated, the growth type of this patch is defined through a
random pointer rtype ranging from 0 to 1. There are two possible growth types: spontaneous
and organic. Figure 2 demonstrates the difference between these two types. Spontaneous
growth refers to new developments that are disconnected from initial developments, while
organic growth represents new developments that expand from initial developments. If rtype

is less than a predefined threshold T spon, then the growth type of this patch is categorized
as spontaneous, otherwise the growth type is organic.

The seed planting is carried out after the determination of growth type. The implemen-
tation of seed planting is different between patches of spontaneous growth and those of
organic growth. If a patch is considered as spontaneous growth, a seed is randomly planted

t0 t1 (Spontaneous growth)

Initial development New development

t1 (Organic growth)

Figure 2. Spontaneous growth and organic growth.
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Figure 3. Simulation of patch growth based on a moving-window approach.

in the space but subject to the development potential of that location. Specifically, a non-
urban cell is first randomly selected. If its development potential (Equation (1)) is greater
than a random value within [0, 1], then this cell is developed as the seed of the patch. If the
patch is of organic growth type, the development probability (Equation (6)) is used instead
of the development potential during seed planting. This can force new development to
only occur around the edge of initial urban patches as the neighborhood densities of these
locations are always greater than 0.

The patch, either of spontaneous growth type or of organic growth type, starts its
growth from the planted seed through a moving-window (Figure 3a). The size of the
moving-window is set as 3 × 3 to ensure the contiguity of the simulated patch. Specifically,
all non-urban cells in a 3 × 3 rectangle window (centered on the planted seed) are collected
and sorted in ascending order according to their development probabilities (Equation (6)).
The roulette wheel selection (Liu et al. 2012) is used to choose one of these non-urban
cells for new development (Figure 3b). Then, the 3 × 3 window moves and centers on this
developed cell (Figure 3c). The roulette wheel selection is again implemented to determine
the next developed cell within the window (Figure 3d). This growth process continues until
the number of new developed cells reaches the estimated patch size (Equation (7)), or the
neighborhood is completely occupied by developed cells. The whole model will stop if the
following condition is satisfied:

A =
∑

i

Ai (8)

where A is the observed or projected amount of new development (cell count).

2.3. A multilevel validation approach

The performance of the Patch-Logistic-CA is assessed from three aspects: cell-level agree-
ment, pattern-level similarity, and fractal dimension. The cell-level agreement is evaluated
through the indicator of ‘Figure of merit’ (Pontius et al. 2007). ‘Figure of merit’ is a ratio,
where the numerator is the number of instances that are observed developed and correctly
simulated as developed, while the denominator is the total number of instances excluding
persistently non-changed instances. A higher value of ‘Figure of merit’ indicates a higher
cell-level agreement. The indicator of ‘Figure of merit’ is calculated using the following
equation (Pontius et al. 2008):
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240 Y. Chen et al.

F = B/(A + B + C + D) × 100% (9)

where F is the ‘Figure of merit’, A is the error due to observed developed and simulated as
persistence, B is the agreement due to observed developed and simulated as developed, C
is the error due to observed developed and simulated as incorrect gaining category, and D
is the error due to observed persistence and simulated as developed. As the Patch-Logistic-
CA only simulates the change of states from non-urban to urban, the value of C should be
equal to 0.

The pattern-level similarity is estimated through the comparison between the simulated
and observed landscape metrics. A total of four landscape metrics are selected to delineate
the development patterns from different aspects (Dietzel et al. 2005, Seto and Fragkias
2005). These metrics are: (1) number of urban patches (NP) and largest-patch index (LPI),
which are size metrics; (2) mean Euclidean nearest-neighbor distance (ENN_MN), which
measures the distribution of patches; (3) mean perimeter-area ratio (PARA_MN), which
measures the shape complexity of the patches. The landscape metrics were calculated using
FRAGSTATS 4.1 (University of Massachusetts, Amherst) (McGarigal et al. 2012). The
pattern-level similarity (al) is estimated as follows:

al = 1 − 1

8

∑
i

�li (10)

�li =
{ ∣∣li,s − li,o

∣∣/li,o × 100%, l = NP, ENN_MN , PARA_MN∣∣li,s − li,o
∣∣ , l = LPI

(11)

where li,s and li,o are the values of ith landscape metrics derived from the simulated pattern
and the observed pattern, respectively; �li is the normalized difference of the ith pair of
simulated and observed landscape metrics. The �li for LPI is calculated as the absolute
differences because the original units of LPI are already percent.

The urban growth process can ‘generate structures that grow outward from a nucleating
center’ (White 2006). Therefore, a city may consist of a large primary urban patch in
the city center and small patches far from the center (White and Engelen 1993). Such
a spatial structure can be measured using the indicator of fractal dimension (White and
Engelen 1993, White et al. 2012). The fractal dimension is estimated through the following
area–radius relationship:

Log(Ai) = DfracLog(ri) + c (12)

where Ai is the total number of urbanized cells in the ith zone with the distance of ri from
the city center, Dfrac is the fractal dimension, and c is a constant.

3. Study area and data

The proposed Patch-Logistic-CA was tested through the simulation of urban growth in
Guangzhou, China. Guangzhou is a fast developing city located in the Pearl River Delta.
It is expected that the proposed model can provide a better understanding of the historical
urban dynamics and assist urban planners to explore future development alternatives for
Guangzhou.

Three scenes of Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus
(ETM+) images (122–44) in 2005, 2008, and 2012 with a spatial resolution of 30 m were
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used to obtain the land-use data for Guangzhou. The failure of the Landsat ETM+ scan-
line corrector (SLC) has caused the serious problem of data gaps on the Landsat ETM+
images. In this study, the data gaps of the Landsat ETM+ images were repaired using a
gap-filling product developed by Scaramuzza et al. (2004) and United States Geological
Survey (USGS 2004). The land-use types include natural water, fishpond, forest, farmland,
built-up area, and bare land. The land-use classification was implemented using the tech-
nique of object-based classification (Definiens Developer 7.0 2003). The land-use types
of fishpond, farmland, and bare land were aggregated as ‘non-urban’ type; while natural
water was reclassified as ‘restricted area’ since no development was allowed during sim-
ulation. In addition, the land-use type of forest was also considered as ‘restricted area’
because most of the forests locate on mountains and are protected by the planning bureau
of Guangzhou.

Manual editing was proceeded for the land-use classifications based on concurrent
fine-resolution remote-sensing images, such as SPOT (e.g., 284–304, 3 December 2007;
285–304, 4 January 2008; 286–303, 23 December 2006) and Google Earth images, to
ensure the quality of land-use data for subsequent simulation. Google Earth provides time
series of fine-resolution images (0.5 m) for the study area. These images are particularly
useful for the correction of classification errors. For instance, the bright area in Figure 4a
is usually classified as bare land by the object-based classification method because of the
high reflectance. But based on the interpretation of the concurrent Google Earth image
(Figure 4b), this area actually is a built-up area with several metal-roofed buildings that

Figure 4. Manual interpretation using Google Earth images. (a) Landsat image (122/44,
23 November 2005). (b) Google Earth (21 November 2005). (c) Landsat image (122/44, 2 November
2012). (d) Google Earth (22 October 2012).
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242 Y. Chen et al.

Table 1. Confusion matrices of the classification of urban areas.

2005 2008 2012

Ref. Urban Non-urban Urban Non-urban Urban Non-urban

Cls. Urban 195 13 280 9 323 9
Non-urban 22 1770 14 1697 11 1657

Notes: Ref. = Reference; Cls. = Classification.

cause the high reflectance. Figure 4c and d provide another example of how Google Earth
images support the correction of misclassifications. The highlighted area in the Landsat
image (Figure 4c) exhibits similar spectral features to those of vegetation, and thus this area
is frequently identified as farmland in the land-use classification. In fact, it is a misclassi-
fication because this area is a residential area with low development density and moderate
vegetation coverage (Figure 4d). Overall, the data quality can be effectively improved
through such manual interpretation of fine-resolution images. The classification accuracies
of built-up area were assessed based on field survey. Table 1 shows the confusion matrices
of the classification of built-up areas. The accuracies are 93.73%, 96.89%, and 97.29% for
the classifications of 2005, 2008, and 2012, respectively.

The land-use data reveal a rapid urbanization process in Guangzhou during 2005–2012.
In this period, the amount of new developments is 512.35 km2, accounting for 68.36% of
the total built-up area in 2005. The land-use data in 2005 and 2008 were used to calibrate
the Patch-Logistic-CA, while the land-use data in 2012 were treated as the reference for
validating the prediction accuracy of the proposed model.

The spatial variables for the calculation of urban development potential (Equation (1))
were prepared using a raster database with a 30-m resolution (Figure 5). They are: (1) vari-
ables representing the proximity to centers at different levels, including distance to the city
center, distance to major business centers, distance to town and district centers, and dis-
tance to local business centers; (2) variables representing the proximity to transportation
networks, including distance to expressways and avenues, distance to railways, and dis-
tance to major roads; and (3) slope, representing the physical condition of a location for
development.

4. Results and discussion

4.1. Calibration

The calibration of the Patch-Logistic-CA follows four steps. First, Equation (7) was cali-
brated to estimate the patch size based on the actual size distribution of new development
patches between 2005 and 2008. These patches were sorted in descending order according
to their sizes (the number of cells). The frequencies and proportions were also obtained for
each patch size. The cumulative proportion was then calculated, as shown by the blue area
in Figure 6a. Equation (7) was used to fit the cumulative proportion and estimate the values
of a0 and a1 for the period of 2005–2008 (Figure 6a). This procedure was also executed
using the land-use data of years 2008 and 2012. The estimated values of a0 and a1 for this
period are shown in Figure 6b.

Second, the weights of spatial variables were determined through logistic regression.
A total of 20% of samples (including developed and non-developed cells) were randomly
selected for logistic regression. A correlation analysis was first implemented for the spatial
variables. The results indicate that there are several correlated variables (Table 2), which
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Figure 5. Spatial variables for the simulation of urban growth in Guangzhou: (a) distance to the city
center; (b) distance to the major business center; (c) distance to town and district center; (d) distance
to local business center; (e) distance to expressway and avenue; (f) distance to railway; (g) distance
to road; (h) slope.

are redundant and may cause errors in subsequent analysis. Thus, we chose the stepwise
(forward) method when performing the logistic regression so as to exclude those redundant
variables (including distance to major business center, distance to local business center,
and distance to expressway). The estimated weights for the rest of the spatial variables
are listed in Table 3. The P-values for these weights are all 0.000. The Receiver operating
characteristic (ROC) curve of the logistic regression and associated statistics are shown in
Figure 6c.

Third, the configuration of neighborhood for Equation (3) was determined through a
sensitivity analysis. We ran the model with five neighborhood configurations: 3 × 3, 5 × 5,
7 × 7, 9 × 9, and 11 × 11. Table 4 shows that the fragmentation of the simulated patterns
increases as the neighborhood becomes larger, as indicated by the increased NP. The sim-
ulation most fits the observed pattern when the neighborhood is set as 3 × 3. Thus, this
neighborhood configuration is selected for subsequent applications.

Finally, the values of T spon and the dispersion parameter δ (Equation (5)) were defined
through a trial-and-error approach. This was accomplished by running the model with dif-
ferent combinations of parameters and comparing the simulated development patterns with
the observed ones. The threshold T spon represents the tendency of dispersed development.
Figure 6d shows the curves of the observed NP and the simulated NP with declining values
of T spon from 0.1 to 0.0001. It can be seen that the value of NP decreases if the value of
T spon reduces. These two curves intersect when T spon almost reaches 0.001. This indicates
that T spon should be set with a value close to 0.001 so as to fit the observed development
pattern.
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Figure 6. (a) and (b) are observed size distributions (blue areas) of the new development patches
and their fitting curves (red lines) for the periods of 2005–2008 and 2008–2012, respectively; (c)
ROC curve and associated statistics of the logistic regression; (d) the simulated NP with declining
values of T spon from 0.1 to 0.0001; (e) the simulated NP with increasing values of δ from 1 to 10.

The parameter δ controls the shape of the development probability surface. A higher
value of δ represents a steeper gradient of the development probability. As depicted by
Figure 6e, the simulated NP decreases if the value of δ increases. The simulated NP most
fits the observed NP when δ is in the interval of [1, 2] as these two curves intersect in this
range. We further ran the model with refined values of T spon and δ, and finally decided to
use the values of 0.0013 and 1.5 for T spon and δ, respectively (Table 3).

4.2. Results and discussion

The calibrated Patch-Logistic-CA was first tested through the simulation of urban growth in
Guangzhou during 2005–2008, and further validated by predicting the urban development
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Table 2. Correlations of the selected spatial variables.

dcity dm_business dtown dl_ business dexpress drailway droad Slope

dcity 1.00
dm_business 0.53 1.00
dtown 0.09 −0.02 1.00
dl_ business 0.51 0.42 0.01 1.00
dexpress 0.23 0.15 0.10 0.15 1.00
drailway 0.39 0.39 0.06 0.36 0.15 1.00
droad 0.29 0.20 0.17 0.25 0.21 0.16 1.00
Slope 0.07 0.12 0.02 0.17 0.07 0.22 0.08 1.00

Notes: dcity = distance to the city center; dm_business = distance to the major business center; dtown = distance
to town and district center; dl_ business = distance to local business center; dexpress = distance to expressway and
avenue; drailway = distance to railway; droad = distance to road.

Table 3. The calibrated parameters of the Patch-Logistic-CA.

b0 bcity btown brailway broad bslope T spon δ

3.101 −4.799 −3.499 −0.892 −8.765 −4.722 0.0013 1.5

Note: P-values are all 0.000.

Table 4. Sensitivity analysis of different neighborhood configurations for the Patch-Logistic-CA.

NP LPI PARA_MN ENN_MN

Observed 390 8.80 424.30 392.04
3 × 3 371 8.08 418.96 622.59
5 × 5 421 8.05 395.22 628.37
7 × 7 495 7.88 369.56 779.67
9 × 9 483 7.93 368.53 716.87
11 × 11 470 7.96 374.61 747.30

Notes: T spon = 0.001 and δ = 1.0.

in 2012. The quantity of new development during 2005–2008 is a total of 239,178 cells
(equivalent to 215.25 km2), which is derived using Guangzhou’s land-use data in 2005 and
2008. The actual and simulated development patterns are shown in Figure 7a and b.

We also ran the cell-based Logistic-CA, originally developed by Wu (2002), to make
a comparison. The same set of data (Figure 5) and the calibrated parameters shown
in Table 3 (except for T spon) were used for the cell-based Logistic-CA. The calcula-
tion of development probability is the same as that of the Patch-Logistic-CA. Urban
growth is then simulated using the cell-based simulation strategy (Wu 2002). Specifically,
a non-urban cell is first randomly selected. The development probability pt

s,ij is then
compared with a random value within the range of [0, 1]. If pt

s,ij is greater than this ran-
dom value, the selected cell is converted to urban land-use; otherwise this cell remains
unchanged. Figure 7c shows the simulated development pattern produced by the cell-based
Logistic-CA.

As illustrated by Figure 7d, the actual urban development is a process of patch birth
and its growth, either of spontaneous or organic types. The Patch-Logistic-CA successfully
yields a development pattern that is similar to the actual one (Figure 7e). The cell-based
Logistic-CA model, however, can only simulate new developed cells that are connected
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Figure 7. Comparison between the actual growth and the simulated growth during 2005–2012.
(d)–(f) are the respective zoom-in views of (a)–(c). (j)–(l) are the respective zoom-in views of (g)–(i).

with initial urban cells. As a result, all simulated new developed cells distribute along the
edges of initial urban patches (Figure 7f). Obviously, such simulated growth does not match
the actual growth shown in Figure 7d.

The Patch-Logistic-CA produces better simulations than the cell-based Logistic-CA
due to two reasons. First, the patch-based simulation strategy can better represent the
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actual land development process. In the real world, urban development usually occurs
in the units of parcels and land lots. These new development patches are usually com-
posed of multiple cells if spatial data with a 30-m resolution are used. Thus, the model
should reflect not only the state conversion of single cells but also the formation process of
patches. This can be better fulfilled by using the patch-based simulation strategy. Second,
the Patch-Logistic-CA can simulate spontaneous growth (Figure 7f) while the cell-based
Logistic-CA cannot. García et al. (2012) also reported this drawback of the cell-based
Logistic-CA in their comparative analysis involving several CA models. In fact, such an
ability is especially important for urban modeling in China because many fast developing
Chinese cities expand in the way of spontaneous growth.

Because CA are stochastic models with uncertainties, we ran the Patch-Logistic-CA for
100 times for validating its simulation accuracies. Such procedure was also implemented
for the cell-based Logistic-CA. The spatial variations of these simulations are shown in
Figure 8. The cell-level agreements of these two models were validated using the ‘Figure
of merit’. We overlaid the observed development pattern with the respective results of
the Patch-Logistic-CA and the cell-based Logistic-CA to identify four groups of cells (i.e.,
persistent non-change, observed non-change simulated change, observed change simulated
non-change, and observed change simulated change) for the calculation of ‘Figure of merit’
(Figure 9).

For the 100 outcomes of the Patch-Logistic-CA, the mean ‘Figure of merit’ ranges
from 16.07% to 17.70%, with a mean value of 16.79%. For the results of the cell-based
Logistic-CA, the ‘Figure of merit’ is 25.74–25.88%, with a mean value of 25.81% (9.02%
higher than that of the Patch-Logistic-CA). The higher ‘Figure of merit’ of the cell-based
Logistic-CA is owing to its cell-based simulation strategy. Such strategy can in effect
evenly distribute the new developed cells around the edges of initial urban patches and

Figure 8. Spatial variations of the 100 simulations produced by Patch-Logistic-CA and cell-based
Logistic-CA. (a) Patch-Logistic-CA (Simulation 2008). (b) Cell-based Logistic-CA (Simulation
2008). (c) Patch-Logistic-CA (Simulation 2012). (d) Cell-based Logistic-CA (Simulation 20012).
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Figure 9. Spatial distribution of successes and errors of the simulations in 2008 produced by
(a) Patch-Logistic-CA and (b) cell-based Logistic-CA. (c)–(d) Mean quantities of successes and
errors for Patch-Logistic-CA and cell-based Logistic-CA, respectively.

hence increase the possibility of hits (i.e., cells observed change and simulated change).
The Patch-Logistic-CA, however, adopts a patch-based simulation strategy which allocates
new developed cells less evenly in the space. Consequently, the possibility of hits reduces
while the risk of cell-level disagreement increases.

Table 5 shows the validation of pattern-level similarity for the simulations in 2008.
The results of Patch-Logistic-CA have a mean pattern-level similarity of 79.66% to
actual development patterns, while those of the cell-based Logistic-CA have only 58.32%.
These results indicate that the Patch-Logistic-CA has better performance of replicating
actual development patterns than the cell-based Logistic-CA. For these two models, the
largest disagreements are in the simulated ENN_MN. However, the cell-based Logistic-
CA also has very large errors in the simulated NP and PARA_MN. As aforementioned, the
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Table 5. Comparison between observed and simulated values of landscape metrics for year 2008.

NP LPI PARA_MN ENN_MN

Observed 390 8.80 424.30 392.04

Patch-Logistic-CA (pattern similarity: 75.65–84.26%)
Minimum 401 7.61 380.11 560.19
Median 423 7.92 391.15 654.11
Maximum 446 8.29 412.88 746.77

Cell-based Logistic-CA (pattern similarity: 56.30–60.70%)
Minimum 166 8.13 306.51 704.40
Median 169 8.18 320.39 714.83
Maximum 173 8.48 333.65 753.02

cell-based Logistic-CA can only change the state from non-urban into urban for those cells
that are connected with the edges of the initial urban patches. Then these new developed
cells might bridge those initially separating urban patches during the simulation process.
As a result, the fragmentation and irregularity of the pattern decrease, as indicated by the
lower NP and PARA_MN.

The prediction performance of the Patch-Logistic-CA was validated through the simu-
lation of urban growth from 2008 to 2012 (Figures 7h and k, 10a and c) using the a0 and a1

shown in Figure 4b and the calibrated parameters listed in Table 3. The cell-based Logistic-
CA was also run in a similar way to make a comparison (Figures 7i and l, 10b and d). The
values of ‘Figure of merit’ is 12.23–13.81% (mean = 14.24%) for the Patch-Logistic-
CA, and 16.92–17.06% for the cell-based Logistic-CA (mean = 17.00%). The difference
between the mean ‘Figure of merit’ of these two models is much lower compared with that
in the simulations of year 2008. The pattern-level similarity of the Patch-Logistic-CA, as
shown in Table 6, is still over 18% higher than that of the cell-based Logistic-CA. Such
results reflect the better performance of the Patch-Logistic-CA for predicting development
patterns.

The results of the Patch-Logistic-CA were also validated by comparing the simulated
and observed fractal dimensions. A set of radii ranging from 5 km to 60 km (in 5 km
increments) from the city center were used to estimate the area–radius relationships and
obtain the fractal dimensions. As shown by Figure 11, the area–radius relationships are
kinked, with steep slopes for the inner zone and flat ones for the outer zone. These kinked
relationships are similar to those in the cases of White and Engelen’s (1993) study. It can be
found that the fractal dimensions of the simulated patterns are close to those of the actual
patterns. This reflects that the proposed Patch-Logistic-CA can capture the fractal features
of actual urban systems.

The experimental results shown above reveal a advantage of the Patch-Logistic-CA:
the ability to produce multiple simulations given the same set of parameters. This is indi-
cated by comparing the spatial variations of the simulation results of these two models
(Figure 8). A similar result can also be found by comparing the variations of ‘Figure of
merit’ and pattern-level similarity for the Patch-Logistic-CA and the cell-based Logistic-
CA (Tables 5 and 6). The ability to produce multiple simulations is also referred to as the
ability of ‘always getting different things right’ by Brown et al (2005). In fact, such ability
is important as it allows policy makers to explore possible development paths and evaluate
the influences of human intervention to initial development process.
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Figure 10. Spatial distribution of successes and errors of the predictions in 2012 produced by
(a) Patch-Logistic-CA and (b) cell-based Logistic-CA. (c)–(d) Mean quantities of successes and
errors for Patch-Logistic-CA and cell-based Logistic-CA, respectively.

4.3. Scenario simulation of future development alternatives

In addition to the simulation of realistic urban growth, the proposed Patch-Logistic-CA
was also used to explore different development alternatives for Guangzhou from 2012 to
2020. As demonstrated by Figure 6a and b, the parameters a0 and a1 can vary over time.
Because we focus more on the model’s performance in scenario simulation, for simplicity,
we used a linear extrapolation approach to predict the values of a0 and a1 from 2012 to 2020
(Figure 12). As a result, a0 = 42.1416 and a1 = –1.2058 for the period of 2012–2016; while
a0 = 44.6686 and a1 = –1.3845 for the period of 2016–2020. We also assumed that the
land demand from 2012 to 2020 follows the same growth rate in the period of 2005–2012
(i.e., 73.19 km2 per year).
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Table 6. Comparison between observed and predicted values of landscape metrics for year 2012.

NP LPI PARA_MN ENN_MN

Observed 436 12.65 385.03 436.50

Patch-Logistic-CA (pattern similarity: 72.89–80.35%)
Minimum 318 13.26 327.26 647.61
Median 336 13.74 351.68 728.91
Maximum 372 14.07 365.11 773.65

Cell-based Logistic-CA (pattern similarity: 54.41–57.96%)
Minimum 177 12.10 213.85 752.40
Median 182 12.11 232.23 757.45
Maximum 186 12.17 243.61 779.83

Figure 11. The actual and simulated area–radius relationships. (a) and (c) are actual development
patterns in 2008 and 2012, respectively; (b) and (d) are simulations in 2008 and 2012, respectively.

Three scenarios were designed and simulated according to different assumptions: (1)
Diffusion scenario. In this scenario, the parameter T spon was set as 0.013 (ten times of the
calibrated T spon shown in Table 3) to represent a loose control on the spatial distribution
of new development. (2) Business-as-usual (BAU). This scenario assumes that the city
follows the historical development path during the period of 2008–2020. Therefore, the
calibrated T spon was used for this simulation. (3) Coalescence scenario. In this scenario,
the parameter T spon was set as 0.00013 to represent the planning objective of enhancing the
spatial connections between initial developments and new developments.

The results of these three scenarios are shown in Figure 13a–f. Landscape metrics
(Table 7) were calculated to illustrate the differences among the simulated patterns. Sprawl
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Figure 12. The predicted a0 and a1 for the periods of 2012–2016 and 2016–2020.

Figure 13. Scenario simulation of urban growth in Guangzhou from 2012 to 2020. (a) and (c) are
diffusion scenarios for years 2016 and 2020, respectively; (b) and (d) are business-as-usual scenarios
for years 2016 and 2020, respectively; (e) and (f) are coalescence scenarios for years 2016 and 2020,
respectively.
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Table 7. Comparison of scenario simulations in terms of landscape metrics.

Year NP LPI PARA_MN ENN_MN

Diffusion scenario 2016 747 15.89 292.59 490.60
2020 815 18.90 269.48 424.16

Business-as-usual 2016 344 16.64 361.85 584.67
2020 336 20.05 322.04 618.30

Coalescence scenario 2016 272 16.97 431.67 599.75
2020 215 20.11 404.63 714.97

patterns are observed in the diffusion scenario because of the weak spatial restriction on
development. Thus, this scenario has the largest values of NP compared with other sce-
narios. The values of ENN_MN are the lowest in this scenario. This is because new urban
patches tend to appear near existing patches or in the gaps between them. As a result, the
closeness between urban patches increases. In the coalescence scenario, new developments
tend to connect with those initial urban patches. This simulates a typical coalescence pro-
cess observed in actual urban developments (Dietzel et al. 2005). The values of LPI are the
highest among all scenarios. Moreover, the average shape complexity increases as the urban
patches grow and merge together. This is reflected by the highest values of PARA_MN
in this scenario. Overall, the proposed Patch-Logistic-CA can generate the development
patterns as expected.

5. Conclusions

This study has demonstrated that the conventional cell-based Logistic-CA have limitations
for simulating realistic urban growth. This model can only simulate new developed cells
that are connected with initial developments (Figure 7f and l). Such simulations are unre-
alistic compared with actual urban developments (Figure 7d and g). To address this issue,
we developed a Patch-Logistic-CA by incorporating a patch-based simulation strategy into
the conventional cell-based Logistic-CA.

The proposed Patch-Logistic-CA was applied to the simulation of urban growth in
Guangzhou during 2005–2012. The results show that although the Patch-Logistic-CA has
lower cell-level agreements, it can generate more reliable development patterns than the
cell-based Logistic-CA (Figure 7, Tables 5 and 6). The Patch-Logistic-CA also can cor-
rectly simulate the fractal structure of actual urban development patterns (Figure 11).
By varying the control parameters, this model can support the ‘what-if’ experiments. This
is useful for urban planners to evaluate the potential impacts of different urban development
strategies (Figure 13 and Table 7).

In this study, we discussed the performance of the Patch-Logistic-CA with the 30-m
spatial data. This is actually a scale in which many existing urban CA models are applied
due to the convenience in deriving land-use data from the popular Landsat TM/ETM+
images (Liu et al. 2008, Santé et al. 2010, Li et al. 2012). The change of scale can have
substantial impacts on CA-based urban simulations (Samat 2006, Ménard and Marceau
2012). We will further examine the scale sensitivity of the proposed model in future work.
Another limitation of this model is that it cannot simulate the development of multiple
patches at the same time, which may cause simulation biases. We will modify this in the
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future by adding a model component to represent the connections and interactions among
patches. Additionally, the cell-level agreement of the proposed model needs to be improved
from the perspective of practical uses. Perhaps extra spatial constraints should be included
into the model for reducing the randomness of the location of simulated developments.
But the amount of spatial constraints should be decided with caution so that the problem
of overfitting can be avoided (Brown et al. 2005).
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